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| of secondary waves. The latter propagate with diminishing

} amplitudes in the direction opposite to that of the main
waves. We have also calculated the maximum run-up amplitude
of two colliding waves. The result checks with exisiting
experiments. N
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Abstract

We consider a head-on collision between two solitary waves
on the surface of an inviscid, homogeneous fluid. A perturbation
method which in principle can generate an asymptotic series of
all orders, is used to calculate the effects of the collision.
We find that the waves emerging from (i.e. long after) the
collision preserve their original identities to the third order
of accuracy we have calculated. However a collision does leave
imprints on the colliding waves with phase shifts and shedding of
secondary waves. The latter propagate with diminishing amplitudes in
the direction opposite to that of the main waves. We have also calcu-
lated the maximum run-up amplitude of two colliding waves. The

result checks with exisiting experiments.
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I. Introduction

We recast in Sec. II, the equations of motion of an inviscid,
constant density fluid with a free surface into a pair of equations
in terms of the free surface elevation h(t,x,y) and the velocity
along a horizontal stream bed W(t,x,y). These equations are con-
venient for a perturbation scheme to be introduced in Sec. III to
study a head-on collision between two solitary waves which are small
in amplitude (%— << 1), and long in wave-length (%— >> 1). Where
a is the measurz of amplitude, A the wave-length, :nd ho the un-

disturbed depth of the fluid. The amplitude and the wave-length

parameters are related by Ursell's ordering for theory of shallow

water i.e. axz = hg. We have carried out the calculations to the
third order of approximation.

In the first order approximation, we have two independently
moving solitary waves aS(£) and bS(n). S(x) = sech2 %, a pro-
gressive wave of permanent type which satisfies the Korteweg-
deVries equation. The variables £ and n denote the right- and
left~going wave-framed coordinates respectively. The constants

a and b specify the heights of the waves. In the second order

approximation, we find that the wave field is modified by:
é (1) quadratic terms in S, (2) change of wave speeds and (3) addi-
i | tion of phase functions 9(1)(n) and ¢(1)(€) to £ and n respectively.
For two waves at large separation, i.e. before or after collision,
the first two corrections above reduce to Laitone's (1960) second
order calculation of a single solitary wave. On the other hand,
we can also use the result in (1) to calculate the maximum run-up

amplitude during the collision. Our result checks with an earlier
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calculation of Byatt-Smith (1971). Since, up to this order of
accuracy, the phase function 6 (or ¢) is a function of n (or §g)
alone, and differs by a constant value through a collision, this
value represents a phase shift for a right- (or left-) going
solitary wave. This result agrees with that of Oikawa and Yajima
(1973). In the third order approximation, we obtain as before,
those three corrections to the wave field. The first correction

is a polynomial of third degree in S. This polynomial in S and

the wave speed correction reduce as the separation between waves
increases, to the known result of Grimshaw (1971), Fenton (1972) per-
taining to a single solitary wave with third order accuracy. How-
ever, the phase functions obtained become functions both of £ and 1.
This gives different values of phase shifts at different points in

a wave. Unlike the uniform phase shift in the second order approxi-
mation which preserves the wave form, here these variable phase
shifts cause a distortion of the wave form in addition to a simple
translation. Since this distorted wave field does not satisfy the
equation for waves which are propagated without a change in shape
and speed, we are forced to investigate in Section V, the slow time
evolution of this distorted wave forms. We find that the waves
eventually transform back to their original forms with shedding of
secondarv wavelets. These secondary waves propagate with diminish-
ing amplitude in the direction opposite to that of the main

waves. Thus we can still speak of preservation of wave form up to

the third order of accuracy, with the understanding that there exists

uniform phase shifts as well as shedding of secondary waves. We stop

our calculation at the third order. However we feel after working

i
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long with the perturbation scheme used here, that the higher order
results will be essentially of similar nature. There are two
imprints.of a collision between two solitary waves: uniform phase
shifts and shedding of secondary waves. We have also calculated
the maximum run-up amplitude up to the third order of accuracy

for two colliding solitary waves. The result agrees very closely
with the numerical and experimental results of Chan and Street
(1970). It also checks with Maxworthy's experiment (1976) for

a solitary wave reflected from a wall (see Fig. 2).
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II. Basic Equations !

We take the velocity field of our flow problem to be described 1
by a potential ¢ (t,x,y,z), satisfying Laplace equation. The free
surface, where the pressure vanishes, is specified by an unknown ]

h(t,x,y). The fluid is supported by a horizontal

function z

plane at z 0, where we set the normal velocity %% = 0. It is
easy to show in this case that the potential ¢ can be expressed as a

Taylor series at z = 0. Using V2¢ = 0 for z > 0 and %% =0at z =0,

we obtain o o a2h .
o & n
where |
0 < 0
Q(t,x:y) = ¢(t,X,y,Z=0) and : V = 1 ‘a—)? + J 'a'y ’ } 1

representing a gradient operator in x,y-plane. We can now express

the kinematic condition at the free surface as

dh .Wh = 3¢ '
=t + VoVh = == , (2)

and the Bernoulli theorem also applied at the free surface as ; [

2

¢ d,.2 2 & i
Tt + gh + 2(¢x + ¢y + ¢z) c(t). (3) %
See Whitham, Chapter (13). 3
In terms of ¢ these become
0 2n+1l
oh 3 ~3sB b 2n -
s TV [néo( 1) o) T vVe(ve)l =0, (4)
30 gL S B A
3t + gh + E(V(b) + r1;1('-1) W[V <I>t +

2n e
1 D™ EMe™er 920 ) =c (v, (5)

m=0




where the symbol "*" stands for the vector inner product for even }
m and the usual arithmetic multiplication for odd m, and«(ﬁn) =
S tdnll the binomial coefficients. We shall consider waves in
m! (2n-m) !

a channel. We therefore drop the y-dependence in h and ¢. By

taking the x-derivative of (5), we obtain in place of (4) and (5)

the following two equations

o 2n+1 2n
oh 9 h 97w
~— + — {hw + X (-1) }=10 (6)
at 9X e (2n+1)! ax2n
{
2 © 2n 2n
oW 9 w n h 9 w f
=~ + =—{gh + 5— + ) (-1) [ — +
ot 3% F o (Zn) T, 2n-1 !
|
2m m 2n-m ‘
1 m,2n,0 w 0 w
e z (-1)  (C)— ——=1} =0 (7) [
2 m=0 3 me 8x2n e |

where w = %% represents the velocity at the bottom of the channel.

Both of the above equations are in the conservative form. It
is interesting to point out that two more conservation laws can be

derived from (6) and (7). They represent conservation of horizontal

momentum and total energy, i.e.,

3'{({) u dx) + H[{)(u e E‘)dz] =0, (8) ' {r

h h 15

LS e N 2, 2 0 L N P : o
[5 gh“+ 5 [(u®+v©)dz]) + == [ dz ul5(u+v®) + £ + gz], (9) g

and

h 3 d d
B -gh-2) + J(gg + ug+vgz)v dz.
z

where u = ¢x and v = ¢z both are expressed in w by (1). We

B s "3

shall however in this paper use Egs. (6) and (7) only.




III-A. Perturbation Solution for Two Head-On Colliding Solitary

Waves.

Consider two solitary waves, far apart, of small but finite
amplitude and heading towards each other. The time evolution of
their interaction, and the final state after their collision
will be our main concern.

We introduce the following coordinates transformations (wave-

frames)
E, = VE k(x—Cpt)

(10)
. = Ve SL(x+CLt)

where 0 < € << 1, € is a dimensionless parameter representing the
order of magnitude of the wave amplitude. The scaling of the hori-
zontal wave length in accordance with Ursell's relationship is
taken as yYe, leaving k and ¢ as the wave numbers of order unity
for the right- and left-going waves respectively. The right- and
left-going wave speed CR' CL are to be related to the amplitudes

of the waves. In the limit of infinitesimal amplitude, they take
the value of linear wave speed (gho)l/z. Anticipating a difficulty
to show up in our perturnation method we introduce the following

transformations of wave-framed coordinates with phase functions.*

* This is essentially the method of strained cooridnates first
introduced by Poincare (1892) for ordinary diffesrential equations and
later generalized to hyperbolic partial differential equations by
Lighthill (1949) and Lin (1954). For a detailed discussion we refer
the reader to Van Dvke's book on Perturbation methods in Fluid

Mechanics, chapter VI. Academic Press, New York (1964).
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£ - ek8(E,n)
(11)

n n - €¢(g,n)

o
when 6(£,n) and ¢ (£,n) are to be determined in the process of our
perturbational solution of (6) and (7). These functions, intro-
duced for purpose or making asymptotic approximation, allows us
to calculate phase changes due to collision.

Using (10) and (l1l1) we obtain the transformation between de-

rivatives as

vyl - gE(CR+cL)[z gﬁ + ekz(?% %g - %g %ﬁ)] (12)
- = éE(CR+CL)[k %g + ekl(%% %; - %% %E)] (13)
where D= (1= ekfl%g) (1 - €2 g%) - e%ke 9% 22 .
Setting h = ho(l+c), we rewrite (6) and (7) into
(g + Cpp 3xllwtCEl + 52 F, = 0, (14)

where C = V§E§ is the linear wave speed, and

2

= - —
F, = £(C=Cp ;) (WCE) + 53— + Cw

OZO o hi“(uc)zn 32n
+ (=L) [
=] (2n) ! otIx

w + CQ+T) aznw

2n-1 — 2n+l ax2n

+

m 2n-m
(_l)m(2n) a3 W 93 \

1
| £0 m 3™ 5y 2= 1. (13)

It is convenient to make the following change of dependent variables

W+ C 2eCa

(16)

w - Cg -2eCB,

Py
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which give us w = ec(a-B) and ¢ = e(a+B). Together with (12) and

(13) we can now represent (14) as

0 a0 a0 9 )
2Ce (C+C. ) [2 5 ekﬂ(en 5=~ eg gﬁ)] + {k 3E + 4 3 +

+ ekLIF=(0-0) 3¢ - 37 (0-0)3=11F, = 0. (17)

A similar equation for B is obtained by replacing o by 8,

£ by n, k by £, and 8 by ¢. Ve need hereafter consider (17) only.

We now express the new variables in the following power series

a(E,n) =a_ + ea; + ea, +

BUEM) = B, # 6By + E%B. # 4.

8(&,n) = 8 _(n) + €@,(&,n) +

$(Em) = 0_(E) + €0, (E,m) + ... (18)
CR = C(1 + eaR1 + ezasz + 33a3R3 S Gn o)

& = c(1 + ebby + ep?n, + L+ L)

Substituting (18) into (17) we obtain a lengthy expression
in power series of ¢, (See Appendix). The coefficients of

2 3 ;
€, €, € and part of 64 will, however, be presented in

sequel as follows:

i) Coefficients of €.

The equations are simply

J0 B
an

o

|

4!
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Their solutions are

a, = af(g), B, = bg(n) (19)
where the constants a,b appearing (19) as well as in (18) are in-
troduced to allow us to take f£(0) = g(0) = 1, £ and g are arbi-
trary functions to be determined next.

ii) Coefficents of 62.

The equation for 0y takes the form

da 28 :
41('§*nl +ak 52 £1) - 2R1a2kf' + 3a’kff" - blegg' - abifg’
2
' ho 3z 3 =
- abkf'g + z=(ak”f"' + 2b27g"™) = 0. (20)

The terms appearing in (20) can be grouped into three kinds:
a) Secular terms: Those which are independent of n. There

h2k2

are three of them in (20); ka(-2R.,af' + 3aff' + —g—— £ ).

il
Upon integrating these with respect to n, we obtain secular be-
havior, i.e. a contribution which becomes unbounded in time or
space. We set these secular terms equal to zero and obtain after

letting

R, = % X h;")k2 = 3a, (21)

an equation which f has to satisfy, i.e.

£"' + 3ff' - £' =0, or f = S(&) = sechz(g)_ (22)
Similarly we have from the equation for B,

' 1 2,2 2

L, =3 hi2®=3b, g =85(n =sech’(3. (23)

)

e o
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b) Non Local terms.
These are not secular in the present, they will be if left
as they are. The solution of o, due to them comes under an in-

tegral sign. Physically this represents the memory of a collison.

In (20), we identify the following two terms to be in this category.
X

9 ey 0
4kaf T £ abkgf" .

We again set this equal to zero, and solve for 60 as

b n
o W [m g(nl)dnl- (24)
Similarly we have :
e 5
6 = 4kJ £(6)dE . (25)
4o

(The above result agrees with an earlier work by Oikawand Yajima.)

The choice of the Lower Limits of integrations will be explain-
ed in the next paragraph. Note that the term abkgf' as mentioned
earlier is non secular at this order. Had we let 90 = 0 we could
have solved o, with a term of the form f£'/S" g(nl)dnl. Such an a,
will cause a secular solution in a,-.

We now identify the right- and left-going waves as those
described by f and g respectively. We shall specify the location
of these waves before and after collison in terms of asymptotic

values of £ and n as follows:

Before Aftgr

collision collison
Right-going wave £ n + - n + +»
Left-going wave g £ + 4o E » =w,

We can then calculate from (24) and (25) the shifts of the waves

after collision. These phase shifts make a uniform translation
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of the £ and n while leaving the profiles intact. We shall call

these simple phase shifts.

c) Local terms.
The remaining terms in (20) can be integrated to give

2

e e TN 2
Gl(E,n) ) b L fg >- g +a F1(£) (26)
similarly
2
Ll el an 2
Bl(ﬁ.n) =g dfr g fqg > f+bGl(n) (27)

where F1(€) and Gl(n) are two arbitrary functions to be determined
from the consideration of the secular terms in the next order of

approximation.

111} cvefficients of & -

The number of terms in this case is already rather formidable,
we shall list them separately in the different groups only.
a) Secular terms: Setting these equal to zero, we have

-3

19 9 =2
= EE)f + Eeitct £, (28)

| R (3f-l)Fl = (2R 8 2

1 2
The first term on the right of (30) gives a solution of Fl
as (2R, - %%)(f + % f') which is unbounded as £ * *+». We thus

require the coefficient of this term to vanish i.e.

_ 19
This gives a second order correction for the wave speed.

The remaining equation can be readily solved and we have

F, = -7 £° + £. | (30)
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We have now the complete solution for oy and Bl:
ay(Em) = §(%% - a%f?) - g - 2a%f) + 2L £g, (31)
B (&) = 3(7a%8% - p%g?) - 1(a%f - 2p%g) + 22 £q. (32)

To the result of Eq. (30) we can also add one of the bounded homo-
geneous solutions of (28), which is the first derivative of f.
However as we go to higher order, it is seen that such an addi-
tion only amounts to a uniform shift of the origin of & which

represents a simple phase shift defined above. We will henceforth
drop it entirely.
b) Non Local terms.

These terms will give the solution of 91 and ¢1 as

n n 2
_ 9ab 1 3 e 138« b

=00 (e}

(3 g€
_ 9ab 1 3 2.2 _ .13 a
1(g,n) ik gJ+m f(El)d 1 + IFI+M[E a f (Z_ b + I)af]dgl.

(34)

Each of the second terms above is of similar nature to the first
order phase shift formulas (24) and (25). They give simple phase
shifts. Note however that the first term in (33) depends

on £ as n > +». Since @, enters into the argument £ of the func-

1
tion £, we see that the wave profile of the right-going solitary
wave differs from the one before collision. It tilts backward

to the direction of propagation of the wave. (See Fig. 1 and the

discussion in ii below). Similar behaviour appears in the left-

going wave because of the first term in (34).




1%

In section V we will study the time evolution of these un-
symmetrical waves and show that its unsymmetrical part, acquired
during collision will separate and propagate away from the
symmetric waves of permanent type which are identical to the waves

before collision.

c) Local terms.

After integrating the local terms, we obtain

I > L R e B S ] 2 3 2
a, =33 b g™ + 2ab " fg 2 bf~g 8 ab“fg + g @ bfg +
43 .3 2 7 3 3
= b'e" - 35 b g + a"E(E). (35)
A similar expression is obtained for 82, i.e.
g 3.3 2.2 1 2402 0 2 3 2
82 =33 a f° + 2abf"g - 2 ab " fg g 2 bfg + 8 ab“fg +
43 _3_.2 7 3 3
33 a f® - -ﬂ)-a £ +'b GZ(T])- (36)

The arbitrary functions to integration F2(E)and Gz(n) like its counter-
part in the previous order of approximation must be determined from

the secularity-free condition in the next order of approximation.

iv) Coefficients of 64.

We shall focus only on the secular terms in this order.
Setting them equal to zero, we obtain an equation for F2 similar

to (28) as follows

1 4

55 393 .2 201 .3 5 Y.

" » - - - 39
F2 + (3f-l)F2 = (2R3 Eﬁ)f 0 e 4 3 f 2

The above equation is solved by




TR W

= 55 _ 197

Ry =™ 113 and F,lf) = 325
Similarly

55 _ 197

Ly = i3 and Gzln) =1%o

for the left-going wave.

as follows

a, = %7 b33 + 2ab2gg?
7 3 43 3
“19 29 g
and
By = %5 aded &+ 2a2bfg2
7 3 43 . 3
maf"‘—(—)—

This completes our result for e,

& % a’bf

2

g_

8

ab2fg +

14
43
0 o (38)
43
720 9 (39)
and 62

o] W

| w

2 43 .3 2
a“bfg + 35 b~ g
(40)

2

Wl
N W

ab“fg +

(41)
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III-B. Summary of Results in this Section.
We have obtained in this section, the following results
for the velocity at the bottom, W, the perturbed free surface

elevation Z, the wave speeds CR’CL’ and the phase functions 0,¢.

W(E, g) =eclaf - by + ¢ [-a’f2 + b2g? + 3(a%e-b%g)) +

R D R T U DR
€ [g(a f°-b°g~) - Tﬁ(a £5=-b g ) & Eﬁ(a f-b g)
+ 3 (a®pfg-ab’fg) - 2 (a’bf’g-an’fe?) )} (42)

and

Z(£,9) = e{af+bg+ [%(a2f2+b292)+%abfg + %(a2f+b2g)] +
L[ D e K R (R 0 SOl 0, KA R
+ e7[=gg@’f+b7gY) - gE@™£7_b7g7) + z(ab"fg” +
+ a’pf?g) - 3(a’pfg + ab’fg) + S(a’f+b%g)1}  (43)
SE wd e 824 22500 4 20 O (44)
o s 2 40 i¥a *
Lo_p.Eb 19 .22, 85 (33 (45)
C R T 112
n n
9 = %E{J (1 + %gbg - %3 ae - %e)g dn + 9£af(£)f g dn} (46)

=00

€

13

¢ = %E{J (1 + 3eaf - 22 be - 35)f ab+ 9Ebg(n)[mf dE}  (47)
4+

where f = sech2 €/2, and g = sech2 n/2 with € and n as defined

by Egs. (10) and (11).
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To compare these results with the earlier works on one soli-
tary wave of Laitone, Grimshaw and Tenton, we note that €
as used here is different from their non dimensional wave ampli-

tude parameter, which is defined as the ratio of maximum wave

a
max)

height, 8ot to the undisturbed depth (i.e. h They

o
expressed the wave number and wave speed in powers of this

parameter. On the other hand we , in this paper, have fixed the
1/2

wave number parameter as € and expanded the other quantities

in terms of ¢. From (44) we see that

£(1,0) = ea + a’e?(3) + a’e’ %3 + ol
(48)
and
t(0,1) = €b + bzez(%) + b3e3 %3 + 0(54)
Defining €p = z(1,0) and EL = 7(0,1), each of which is the

" amplitude parameters used by Laitone, Grimshaw and Fenton, we have

after inverting the above relationship

5 2 3583 4
ga = €. - =€ + = €2 + 0O(e)
R 4°R 2 R R (49)
s R d .3 4
eb = €y, 7 °L + 3 EL + O(EL) 5
We now rewrite (44-46) in terms of ER and EL as follows:
i 3 2_ 8101 .3 _ 15 2 S
z(Esn) sR{f + 7 eR(f f) + ER(EB_ f T £° + 3 £)} +
3 2 2,101 3 151 _2 5
gt golo-gl ey o g5 9 g9t
1 7 ; 11
eREL{E . [z(eRf+€Lg) - E—(ER+;L)j}fg (50)
C €
R _ R 3.2 3 .3
e s e L A (51)
C €
L - N 3 .3
e et e R T R (52)

Py
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3e h € n
€ & k.o 8 A Yo 55 gl
o w B pall B s 3[[00“*51.‘29 g
13 n
- 7 trlg dn + 9e.f g dnl} (53)
3e
| VAN 74, .3 :
= H; e (1 g R + 178 eR) {x CRt + 0}

=t

3e h € £
| _5 71 2 o "L TR )
"Ho\|_4 Slet e - A R ol [L“ e -7

Nf 5
|

13 . e aE 4 9 ‘Efd} 54
7 €l €9 Lm €] (54)

‘ L 71 .3
—=(1 - + g e {x + Ct + ¥}

The last list of (53) and (54) serve to define © and Y.

The following qualities are presented for convenience of com-
parison with the experimental results of Chan-Street, and Maxworthy.

(i) phase chages

n +* = O >0
Before collision

S IR R )
€ € € ¢
& L L 13 *L
. L ho\‘ 3 [1+g= = Foegl + Oh J3 egf
After collision : -
R R 13 R
> 40 Y = -'h\l [1+—- - 4—eL] - 9ho 3 €19

>
@
1]
(=
o
ult"” ’
=
+
o
1

%—‘3-&: % 9ho\|3—eRf (55)
- %ﬁen) - 9h \‘ €19 (56)

The first term in the right of (55) or the first term in the

|

right of (56) represents a simple phase shift (a uniform translation

-




18

without change of wave profile). This agrees, in the first order,

with that of Oikawa and Yajima.

(ii) Distortion of Wave Profile.

The second term in the right of (55) and (56) is a function of §
or n respectively, i.e. different phase shift at points in the
wave. This causes a distortion in the wave profile. For waves of
large separation, the localized interaction terms which are pro-
ducts of £ and g) in (50) vanish. Following the right-going wave

we then have after setting g = 0,

5 3 2 7,300 .3 381 .2 5
with £ = sech(h JEEB(l — e AL e e L oce a0y (58)
=8 oV 4 3 R 7 178 °mr R '

where the values of @ before‘and after collision are given in (i).
In fig. 1 we plot the perturbed.free surface elevation before and
after collision according to Eq. (57) and (58). Before a collision,
@ = 0, the profile is symmetric but thinner than the first order
approximation given by (58). After the collision, the wave becomes
unsymmetrical and tilts backward to the direction of its propagation.
We have also plotted the difference between the unsymmetric and the
symmetric profile (graph No. 3). The propagation of these tiled

waves will be discussed in the next section.

In addition to the tilting discussed above, a second hump will
appear in the right branch of the wave pfofile for values of

> (48)"1/4

€ % .3799. However for such an-e_ the higher order

R R
terms which are neglected in © becomes comparable to those terms
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returned. The significance of this hump is thus not clear and

we shall say no more about it.

(iii) Maximum (Run-up) Amplitude during Collision.
For two head-on colliding solitary waves with their maximum
heights before collision defined as €Rr and €7

point (£,n) is defined by the value of the perturbed free surface

the Run-up at a

elevation of Eqg. (50). It is easy to see that the maximum Run-up

exists at the point (£,n) where £ = 1, g = 1 and hence

L

Maximum Run-up = €p + €; + ——= + & eReL(eR+eL). (59a)
For two identical solitary waves €r = €L and the maximum Run-
up is
2
: e e B
Maximum Run-up = ZER t gk L ER (59b)

In figure 2 we plot the max Run up of (59-b), for the first,
second (Byatt-Smith), and third order approximation, respectively.
The existing numerical, (Chan and Street) as well as the experi-
mental results, (Chan and Street, Maxworthy) are also presented (in
the plot). It is seen that our third order result is in complete
agreement with the numerical values of Chan and Street for

€, < 0.5. The experimental data has a sizable spread. Even then,

R
the third order result seems to represent them best if one excludes

those data of Maxworthy which represent wave-wave interaction ex-

periment.

2

abba
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V. Time Evolution of the Unsymmetrical Waves.

It is seen from the results of the previous section that the
after-effect of a collision on a solitary wave is manifested only
by the phase functions € and ¢ As the collision process comes
to an end designated by n + +» and § » -« for the right- and
left going wave respectively, we see that, say for the right-going
wave, all the terms associated with g(n) vanish, except those
appearing in the phase function where g is under an integral sign.
After dropping all terms which are products of f and g, we are
left with a solitary wave propagating with a constant speed. This
wave, however, is not a solution to the equation for wave propa-
gating without change of speed and shape. In this section we
consider the slow time evolution of this unsymmetrical wave.

. We first derive the appropriate governing equation, and then
solve this with the wave profile emerging from the collision as
an initial data.

Since the & dependence of 6 first occurs in the third order
of €, we take that a slow time dependence does not come in until
that order of approximation. We assume, following the right-

going wave that

¢ = es(E) + €20,(6)) + 5306, + ... (60)

) o ' 2 L)

W' = eCo[S(E,) +e WZ(EO) + € W3(Eor‘t) * sen] (61)
where £ ™ Ve k(x-Cpt), T in §, and w; allows the slow time

evolution of the wave in a moving frame fixed in the right-going
wave. We have also assumed that the left-going wave is far away

and exerts no more effect on the right-going wave. We define
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the slow time variable by

3/2 o (62)

Substituting (62), (61), and (60) into the basic equations (6)
and (7), we obtain equations for S in the first order approxima-

tion, and §2, w5 for the order in 52. The solutions of these

eqautions are

g
Rl = %, S = sech2 59 )
b (63)
_ 19 W o S
Rz—zﬁ-, W2 S += S, C2—4S +2. J

These are equivalent to the solutions obtained by Laitone.

To the third order of approximation, we have in terms of Wé

2 £
9 “w! o W'
3 : 3 8 VBB 182
.a?— + (3S—1)W3 + 2J v dEO = (2R3 —-56)5 E S® +
o + 12 s3 - 9s4. (64)

We decompose wi(go'T) above into a stationary solution plus a

transient, i.e.

W3'( %rT) = W3(E°) + V(EOIT)- (65)
These functions then satisfy
2
d“w
2 4 [ 38-1)W, = (2R, = 298 -~ 22 82 & 32 8% - 9 (e8)
2 3 3 56 5
dag
o
and :
3% . 3 A%
2 — + —[ 5 + (38-1)V] =0 (67)
9T 9k 350

The solutions to (66) are

6 6 .2 . 4 _ 58
w3-§s--§s+ S and R, = == , (68)

prv o
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which is equivalent to the third order stationary solution of
Grimshaw.

We now consider the time evolution of Eq. (67) with an initial
data being the difference between the wave field of the right-
going wave immediately after collision and that of W3(£o) of (68), i.e.
Curve No. 3 in Fig. 1. It can be shown that for any

ef Mo
V(BT = BE R T (69)

is a solution of (67) provided that we take
( k) (k2 1) 2iks (& ) (€ ) 2k2 S'(€Ql (70)
PIE. . = ik (k“-1) + 2iks + S'(E) +
o o o Slio)

and k3 + k +uyu=0.

This form of solution is first suggested by Jeffrey and
Kakutani (1970). Since F(go,k) is bounded for all &o, to have a
bounded solution Vu(EO,T) in Eo’ we must take a real k, which in
turn requires a real py. Therefore the general solution for V in
(67) can be represented as an integral over all real k, i.e.

© = 5 + ikF,o
V(go,k) = [wdk A (k) F(Eo,k)e (71)

where A(k) is determined by the initial data V(go,1=0). The

asymptotic behaviour of V(EO,T)* for 1T + » is readily obtained by

* Since S' is a solution of (67) corresponding to u = 0, any
initial data of this form will remain unchanged in time.
The simple phase shifts are of this sort. They are exceptional

e
-

to what is to be said below. e

¥ i

P

s
N

BN aAA

T




23
the method of stationary phase.
Mot il
2Rk VP(K o8 ) d(k E = wm— = = ggn u%)
1im V(EorT) = o 5 oo o’o 2 2 o (72)
T> T (d%u;,1/2
& =5l
dk
2 g

3 R 3 L ok 2
where 3 kO = (T + 2) and N ko(l+ko)

As T » @ to have areal ko' one must choose large negative
values of £, that is to say, asymptotically the distortion of
the riaght-going solitary wave emerging from the collision propa-
gate to the left, in the opposite direction of propagation of
the main wave. The amplitude of this secondary wavelet as is
evident from (72) tends to zero asymptotically due to dis-
persion.

In conclusion we state that when twg solitary waves have a
head—oﬁ collision, the identities of each colliding wave are
preserved, (i.e. their wave profiles remain unchanged). However
the process of collision does leave twé imprints on the emerging
waves:

1) Simple phase shifts for each wave.

These phase shifts as given by the first term in Eq. (55)
and (56) have the effect as if the waves are retarded during
the collision.

2) Shedding of secondary waves.

Each solitary Qave sheds a secondary wave with a shape of
curve 3 in Fig. 1. These waves propagate with diminishing

amplitude in the opposite direction of the main waves.

- v ad "
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Appendix Al

Substituting (18) into (17) we obtain a power series in .

Here we recast each order of alone.

aa 9B
0(e) =0 ———an = 0, 3E 0 (Al)
. s : 2h§£2 528
gte") = 0 8 L s = = da_+8 )8 ]
aao 5
+ A0k op2lxe= - g Byl 4
: hgkz azao a
k gf[ 3 522— + (5 o= ZRla)ao] =0 (A2)

The equation for Bl is obtained from (A2) by replacing oy by Bq

a, by Bo’ £ by k, 90‘ by z ., n by &, a by b, and R, by L,.

; 20, : 2h§22 azci
= s | e s | *
0(e”) 0 42 T + man[ 3 an2 (ao+B°)Gl
e R | 2 65 .2 7 2
- B F] + (3 Bg bB, -5 Bte t ER9
11 aolf, 4 da, 39,
+ 5= baoso o, + 5 haogo)] + 4kg 3E [3
1 1 13 42 13 5
= I 61 - arl9ugbe * T Bt i bg )] +
; hgkz azpi 4
s - ® - R
k 35[ 3 agz + (3o¢o a)Fl (2R2 20)a o
2
o . (A2)
< 9 aaz . o] —_h
L s "R
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The equation for 82 can be obtained from (A3) in a similar fashion

as Bl from (A2).
da o0
4, _ _3 4 _©o
0O(e’) =0 42 o + 2 m ceo] + 4k& 5E R
2 CK" 5%pa 55
& = % = - 29
kwil—7 oz * {3a,-a)F3 = (2R; - gEiate,
393 .2 2 201 3 591 4, _
+ 160 a %~ TE aa + e aol =0 (A4)
where F* = a2F G* = b2G G* = b3G and F* = a3F F, and F
1 318 oyl e =5 2 2 2Vavil 2

are arbitrary functions of integration of (A2) and (A3) for oy
and Oyi G1 and G2 are the corresponding arbitrary functions of
integration for Bl and Bz. The symbols [...] in (A4) represent

all the non secular terms in the (64) order.




